The Relationship Between Dialogic Teacher Feedback and Student Outcomes on Standardized Science Assessment.

Mason Kuhn and Mark McDermott
University of Northern Iowa
University of Iowa
Need for the Dialogic Feedback Observation Tool (DFOT)

- The act of science is a practice grounded in argumentation (Anderson, 2002).
- Science and Engineering Practices of the NGSS
 - 1. Asking questions (for science) and defining problems (for engineering)
 - 2. Developing and using models
 - 3. Planning and carrying out investigations
 - 4. Analyzing and interpreting data
 - 5. Using mathematics and computational thinking
 - 6. Constructing explanations (for science) and designing solutions (for engineering)
 - 7. Engaging in argument from evidence
 - 8. Obtaining, evaluating, and communicating information

- Most teachers are not practicing instructional strategies that promote dialogic discourse (Duschl et al., 2007; Flup, 2002; Osborne et al., 2003; Pianta et al., 2007)
- Potential dual purpose:
 - Diagnostic tool to determine if the teacher creates potential opportunities for dialogic interactions to occur.
 - In-service professional development - self-assess practice.
- This study used the DFOT as a diagnostic tool to quantify teachers’ dialogic feedback.
Development of the DFOT

- Headings and subheadings created after extensive literature review of Argumentation in science education
 - **Epistemic Cognition**
 - Development of the views shared by the scientific community. Shifting from an everyday view to a scientific view.
 - **Construction**
 - Establishing a *communal* environment where teachers and children address learning tasks together
 - **Critique**
 - Facilitating joint Dialogue where children listen to each other and consider alternative viewpoints
 - **Elaboration**
 - Provides opportunity for students to elaborate about their claim
 - **Reflection**
 - Provides opportunity for students to reflect on their claims and the claims of peers
<table>
<thead>
<tr>
<th>Focus</th>
<th>Example(s)</th>
</tr>
</thead>
</table>
| Epistemic Cognition | “How do your ideas align with the ideas of the experts?”
“What do you think about your classmate’s source for their claim?” |
| Construction | “What evidence do you have for your claim?”
“Before we discuss this together have a conversation with your small group about the topic.” |
| Critique | “Your classmate has presented the idea that ______; can anyone offer a different idea?”
“Does anyone want to negotiate with your classmate’s idea?” |
| Elaboration | “Do you remember when your classmate said____.” Can you add anything to those thoughts now?” |
| Reflection | “Can you explain what we discussed in your own words?” |
Field Trial

- Six 3rd grade teachers recorded a 45 minute science lesson.
 - **Prompt:** “Record a typical lesson where you are discussing the meaning of data collected after an investigation.”
- Three teachers who were awarded the Presidential Award for Excellence in Science and Math Teaching (PAEMST).
 - PAEMST is the highest award bestowed to science and math teachers in the United States
- Three 3rd grade teachers with no Argument-based inquiry professional development
Results of the Field Trial

Dialogic Feedback Observation Tool

- Epistemic Cognition
- Construction
- Critique
- Elaboration
- Reflection
- Total

PAEMST 1, PAEMST 2, PAEMST 3, Teacher 1, Teacher 2, Teacher 3
Details of the Study

• Three-Year Professional Development project with a mid-sized school district.
 ○ State of Iowa had recently adopted the NGSS as their science curriculum.
 ○ PD focused on the Science Writing Heuristic approach.

• Five-day summer workshop with ongoing professional development through Professional Learning Community (PLC).

• Summer workshop focused on Argument-Based Inquiry theory, cognitive learning theory, and argumentation.
 ○ NOT training on how to “follow” a curriculum or learning a “Bag of Tricks”
Argument-based Inquiry - The SWH Approach

- **Big Questions** (What are our questions? What can we research? What can we test? What can we develop?)
- **Testing & Observations** (How should we set up our tests? How should we collect and record our observations?)
- **Claims & Evidence** (What are the strengths and weaknesses of our claims based on our evidence?)
- **Consultation with Experts** (How do our claims relate to accepted scientific ideas?)
- **Math Infusion** (What is the best mathematical process to use? Why is a certain mathematical process relevant?)
- **Technology Infusion** (How can technology help the processes above? What is appropriate technological integration?)
- **Application** (How can I apply my understanding to developing a product or a process?)
- **Communication** (How can I communicate my understanding to an outside audience?)
Participants
- 33 Teachers
- Experience 2-30 years of experience
- Grade Level 3rd - 8th
- Years attended the workshop: 1-3 years

Students District Information
- District 2,203 students
 - 32.6% qualify for Free and Reduced Lunch and 17.7% below the poverty line. 15.6% are considered in a minority group, and 2.9% are labeled English Language learners.
 - Mostly middle-class caucasian families
 - Pre-PD: Students scores lower on the science section of the Iowa Assessments than math and reading.
Descriptive Statistics

- the National Percentile Rank (NPR) was converted to Normal Curve Equivalent (NCE) score.
- “At Risk” Variable created
 - Number of students with an IEP, ELL, or qualify for Free-and-Reduced Lunch
 - If a student had more than one label they were counted two or three times.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependant-NCE Science Score</td>
<td>55.64 (SD = 4.12).</td>
<td>Max. 65 Min. 44 (range = 21).</td>
</tr>
<tr>
<td>At Risk</td>
<td>10.75 % (SD=10.49).</td>
<td>Max 24%, Min. 3% (Range = 21)</td>
</tr>
<tr>
<td>DFOT</td>
<td>29.21 (SD = 10.54)</td>
<td>Max 50 Min 8 (range = 42).</td>
</tr>
</tbody>
</table>
Data Collection

- Teachers recorded a 45-minute video of a science lesson.
- Teachers were given a prompt
 - “Record a typical lesson where you are discussing the meaning of data collected after an investigation.”
- Interrater reliability: $r = 0.92$
Research Question

1. Does the ability to utilize dialogic teaching practices, as measured by the Dialogic Feedback Observation Tool (DFOT), predict student outcomes on standardized science Assessments?
Results

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>$SE\ B$</th>
<th>t</th>
<th>P</th>
<th>$R^2_{\text{Adjusted Change}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At Risk</td>
<td>-0.09</td>
<td>0.12</td>
<td>-0.83</td>
<td>.413</td>
<td>0.02</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At Risk</td>
<td>0.26</td>
<td>0.06</td>
<td>4.40</td>
<td>< 0.001</td>
<td>0.385</td>
</tr>
<tr>
<td>DFOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total R^2_{Adjusted} = 0.365</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contributions

- **Teaching and Learning of Science**
 - Captures actual teacher interactions instead of value judgments
 - Potential Teacher self-evaluation tool

- **NARST Members/Science Education Field**
 - Quantitative Tool that measures teachers’ ability to create potential opportunities for dialogic interaction.
Limitations

- Small Sample size
- Non-diverse student population
- Multiple-grade levels
- Only evaluated one video sample
Future Research

- The ASSIST Approach
- Correlations between dialogic feedback and teacher epistemic cognition
- Educative Curriculum Materials (ECM)
 - Video Based Coaching